题目内容
为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图:
规定:当产品中的此种元素含量不小于18毫克时,该产品为优等品.
(1)试用上述样本数据估计甲、乙两厂生产的优等品率;
(2)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望;
(3)从甲厂的10件样品中有放回的随机抽取3件,也从乙厂的10件样品中有放回的随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.
规定:当产品中的此种元素含量不小于18毫克时,该产品为优等品.
(1)试用上述样本数据估计甲、乙两厂生产的优等品率;
(2)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望;
(3)从甲厂的10件样品中有放回的随机抽取3件,也从乙厂的10件样品中有放回的随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.
(1)甲厂抽取的样本中优等品率为,乙厂抽取的样本优等品率为;(2);(3).
试题分析:(1)由古典概型计算公式可求得甲乙两厂生产的优等品率;(2)首先的取值为0,1,2,3,结合超几何分布及排列组合可求得的值,进而可得的分布列及其数学期望;(3)首先将所求概率分解为基本事件的和,即A=“抽取的优等品数甲厂2件,乙厂0件”,B=“抽取的优等品数甲厂3件,乙厂1件”,再利用二项分布求解.
试题解析:(1)甲厂抽取的样本中优等品有6件,优等品率为 1分
乙厂抽取的样本中优等品有5件,优等品率为 2分
(2)的取值为0,1,2,3. 3分
5分
的分布列为
0 | 1 | 2 | 3 | |
的数学期望为 8分
(3) 抽取的优等品数甲厂恰比乙厂多2件包括2个事件,即A=“抽取的优等品数甲厂2件,乙厂0件”,B=“抽取的优等品数甲厂3件,乙厂1件” 9分
10分
11分
抽取的优等品数甲厂恰比乙厂多2件的概率为 12分
练习册系列答案
相关题目