题目内容

如图,☉O和☉O′相交于A,B两点,过A作两圆的切线分别交两圆于C、D两点,连结DB并延长交☉O于点E.证明:

(1)AC·BD=AD·AB;

(2)AC=AE.

 

【答案】

见解析

【解析】

证明:(1)由AC与☉O′相切于A,得∠CAB=∠ADB,

同理∠ACB=∠DAB,

所以△ACB∽△DAB,从而=,

即AC·BD=AD·AB.

(2)由AD与☉O相切于A,得∠AED=∠BAD,

又∠ADE=∠BDA,得△EAD∽△ABD.

从而=,

即AE·BD=AD·AB,

结合(1)的结论,AC=AE.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网