题目内容
6、命题p:在△ABC中,∠C>∠B是sinC>sinB的充分必要条件;命题q:a>b是ac2>bc2的充分不必要条件( )
分析:先判断p?q与q?p的真假,再根据充要条件的定义给出结论;也可判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
解答:解:在△ABC中,
若∠C>∠B,根据大角对大边,可得c>b
再由正弦定理边角互化,可得sinC>sinB
反之也成立.
故命题p:在△ABC中,∠C>∠B是sinC>sinB的充分必要条件是真命题
由a>b,当C=0时,ac2>bc2不一定成立,
但若ac2>bc2成立,C≠0,则a>b成立
故命题q:a>b是ac2>bc2的必要不充分条件
即p真q假
故选A
若∠C>∠B,根据大角对大边,可得c>b
再由正弦定理边角互化,可得sinC>sinB
反之也成立.
故命题p:在△ABC中,∠C>∠B是sinC>sinB的充分必要条件是真命题
由a>b,当C=0时,ac2>bc2不一定成立,
但若ac2>bc2成立,C≠0,则a>b成立
故命题q:a>b是ac2>bc2的必要不充分条件
即p真q假
故选A
点评:判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关题目