题目内容

为了解某班学生喜爱打羽毛球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

喜爱打羽毛球 不喜爱打羽毛球 合计
男生
20
20
5
25
25
女生 10
15
15
25
25
合计
合计
30
30
20
20
50
已知在全部50人中随机抽取1人抽到不喜爱打羽毛球的学生的概率
2
5

(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打羽毛球与性别有关?说明你的理由;
(3)已知喜爱打羽毛球的10位女生中,A1,A2还喜欢打篮球,B1,B2还喜欢打乒乓球,C1,C2还喜欢踢足球,现在从喜欢打篮球、喜欢打乒乓球、喜欢踢足球的6位女生中各选出1名进行其他方面的调查,求女生B1和C1不全被选中的概率.下面的临界值表供参考:
P(Χ2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:Χ2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)
分析:(1)根据在全部50人中随机抽取1人抽到喜爱打羽毛球的学生的概率,做出喜爱打羽毛球的人数,进而做出男生的人数,填好表格.
(2)根据所给的公式,代入数据求出临界值,把求得的结果同临界值表进行比较,看出有多大的把握说明打羽毛球和性别有关系.
(3)从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,列举出其一切可能的结果组成的基本事件,而用M表示“B1,C1不全被选中”这一事件,则其对立事件
.
M
表示“B1,C1全被选中”这一事件,通过列举得到对立事件
.
M
的事件数,求出概率,最后利用对立事件概率求解即可.
解答:解:(1)列联表补充如下:
喜爱打羽毛球 不喜爱打羽毛球 合计
男生 20 5 25
女生 10 15 25
合计 30 20 50
(2)∵Χ2=
50×(20×15-10×5)2
30×20×25×25
≈8.333>7.879

∴有99.5%的把握认为喜爱打篮球与性别有关.
(3)从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2
基本事件的总数为8,
用M表示“B1,C1不全被选中”这一事件,则其对立事件
.
M
表示“B1,C1全被选中”这一事件,由于
.
M
由(A1,B1,C1),(A2,B1,C1),2个基本事件由对立事件的概率公式得P(M)=1-P(
.
M
)=1-
2
8
=
3
4
点评:本题是一个统计综合题,包含独立性检验和概率,本题通过创设情境激发学生学习数学的情感,帮助培养其严谨治学的态度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网