题目内容

(2012•扬州模拟)已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的一条渐近线与曲线y=x3+2相切,则该双曲线的离心率等于
10
10
分析:求出双曲线的渐近线方程,函数y=x3+2,求导函数,再设切点坐标,利用双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的一条渐近线与曲线y=x3+2相切,建立方程组,即可求得几何量之间的关系,从而可求双曲线的离心率.
解答:解:双曲线的渐近线方程为y=±
b
a
x
,函数y=x3+2,求导函数可得y=3x2
设切点坐标为(m,n),则
∵双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的一条渐近线与曲线y=x3+2相切,
n=3m2
n=
b
a
m
3m2=
b
a
,∴m=1,
b
a
=3,∴b=3a,
∴c2=a2+b2=10a2,∴c=
10
a

∴e=
c
a
=
10

故答案为:
10
点评:本题考查直线与曲线相切,考查双曲线的几何性质,正确运用双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的一条渐近线与曲线y=x3+2相切是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网