题目内容
【题目】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF= ,EF交BD于点H.将△DEF沿EF折到△ 的位置, .
(1)证明: 平面ABCD;
(2)求二面角 的正弦值.
【答案】
(1)
证明:∵ ,
∴ ,
∴ .
∵四边形 为菱形,
∴ ,
∴ ,
∴ ,
∴ .
∵ ,
∴ ;
又 , ,
∴ ,
∴ ,
∴ ,
∴ ,
∴ .
又∵ ,
∴ 面
(2)
解:建立如图坐标系 .
, , , ,
, , ,
设面 法向量 ,
由 得 ,取 ,
∴ .
同理可得面 的法向量 ,
∴ ,
∴
【解析】(1)由底面ABCD为菱形,可得AD=CD,结合AE=CF可得EF∥AC,再由ABCD是菱形,得AC⊥BD,进一步得到EF⊥BD,由EF⊥DH,可得EF⊥D′H,然后求解直角三角形得D′H⊥OH,再由线面垂直的判定得D′H⊥平面ABCD;(2)以H为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到 的坐标,分别求出平面ABD′与平面AD′C的一个法向量 ,设二面角二面角B﹣D′A﹣C的平面角为θ,求出|cosθ|.则二面角B﹣D′A﹣C的正弦值可求
练习册系列答案
相关题目