题目内容
在中,“”是“为直角三角形”的
A.充分不必要条件 |
B.必要不充分条件 |
C.充要条件 |
D.既不充分又不必要条件 |
A
分析:先证明充分性,设 与的夹角为α,利用平面向量的数量积运算法则化简? ,由已知? =0,得到cosα值为0,由α的范围,利用特殊角的三角函数值求出α为直角,可得三角形ABC为直角三角形;反过来,若三角形ABC为直角三角形,但不一定B为直角,故必要性不一定成立.
解:当? =0时,
设与的夹角为α,
可得? =ac?cos(π-α)=-ac?cosα,
又? =0,
∴-ac?cosα=0,即cosα=0,
∵α∈(0,π)
∴α=,
则△ABC为直角三角形;
而当△ABC为直角三角形时,B不一定为直角,
故? 不一定等于0,
则在△ABC中,“? =0”是“△ABC为直角三角形”的充分不必要条件.
故选A
练习册系列答案
相关题目