题目内容
.已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为R,求实数a的取值范围.
【答案】
(-∞,-1]∪(,+∞)
【解析】主要考查导数函数的概念、二次函数、对数函数的图象和性质。
解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈R恒成立.
当a2-1≠0时,其充要条件是:
解得a<-1或a>
又a=-1,f(x)=0满足题意,a=1,不合题意.
所以a的取值范围是:(-∞,-1]∪(,+∞)
练习册系列答案
相关题目
已知函数f(x)=
是定义域上的递减函数,则实数a的取值范围是( )
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|