题目内容
已知向量
=(2,-1,2),
=(1,0,3),则cos∠OAB=
latex=“
“>39
latex=“
“>39.
OA |
OB |
| ||
9 |
| ||
9 |
| ||
9 |
| ||
9 |
分析:由向量
=(2,-1,2),
=(1,0,3),知
=(-2,1,-2),
=(-1,1,1),再由公式cos∠OAB=
,能求出cos∠OAB的大小.
OA |
OB |
AO |
AB |
| ||||
|
|
解答:解:∵向量
=(2,-1,2),
=(1,0,3),
∴∴
=(-2,1,-2),
=
-
=(-1,1,1),
∴cos∠OAB=
=
=
.
故答案为:
.
OA |
OB |
∴∴
AO |
AB |
OB |
OA |
∴cos∠OAB=
| ||||
|
|
=
2+1-2 | ||||
|
=
| ||
9 |
故答案为:
| ||
9 |
点评:考查空间向量的运算,是基础题.解题时要认真审题,注意空间向量的夹角公式cos∠OAB=
的运算.易错点是误把cos∠OAB看成是向量
=(2,-1,2),
=(1,0,3)所成的角.
| ||||
|
|
OA |
OB |
练习册系列答案
相关题目