题目内容
(08年山东卷)(本小题满分12分)
将数列中的所有项按每一行比上一行多一项的规则排成如下数表:
记表中的第一列数构成的数列为,.为数列的前项和,且满足.
(Ⅰ)证明数列成等差数列,并求数列的通项公式;
(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第行所有项的和.
【解析】(Ⅰ)证明:由已知,当时,,
又,
所以,
即,
所以,
又.
所以数列是首项为1,公差为的等差数列.
由上可知,
即.
所以当时,.
因此
(Ⅱ)解:设上表中从第三行起,每行的公比都为,且.
因为,
所以表中第1行至第12行共含有数列的前78项,
故在表中第13行第三列,
因此.
又,
所以.
记表中第行所有项的和为,
则.
练习册系列答案
相关题目