题目内容

(本题满分12分)

已知椭圆的焦点在轴上,中心在原点,离心率,直线和以原点为圆心,椭圆的短半轴为半径的圆相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆的左、右顶点分别为,点是椭圆上异于的任意一点,设直线的斜率分别为,证明为定值;

(Ⅲ)设椭圆方程为长轴两个端点, 为椭圆上异于的点, 分别为直线的斜率,利用上面(Ⅱ)的结论得(        )(只需直接写出结果即可,不必写出推理过程).

(Ⅰ)椭圆方程             ……………4分

   (Ⅱ)证明:由椭圆方程得

点坐标

是定值                   ……………10分

(Ⅲ)               ……………12分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网