题目内容
如图,在平面直角坐标系xoy中,已知F1(-4,0),F2(4,0),A(0,8),直线y=t(0<t<8)与线段AF1、AF2分别交于点P、Q.
(Ⅰ)当t=3时,求以F1,F2为焦点,且过PQ中点的椭圆的标准方程;
(Ⅱ)过点Q作直线QR∥AF1交F1F2于点R,记△PRF1的外接圆为圆C.
①求证:圆心C在定直线7x+4y+8=0上;
②圆C是否恒过异于点F1的一个定点?若过,求出该点的坐标;若不过,请说明理由.
答案:
练习册系列答案
相关题目
如图,在直角坐标平面内有一个边长为a、中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为( )
A、偶函数 | B、奇函数 | C、不是奇函数,也不是偶函数 | D、奇偶性与k有关 |