搜索
题目内容
将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标
x
,第二次向上的点数为纵坐标
y
的点(
x
,
y
)在圆
x
2
+
y
2
=27的内部的概率为________.
试题答案
相关练习册答案
略
练习册系列答案
初中课堂同步训练系列答案
实验报告册知识出版社系列答案
夺冠百分百新导学初中优化作业本系列答案
初中同步测控优化设计单元测试卷系列答案
全优备考系列答案
世纪金榜全国中考试题精选汇编与分类详解系列答案
全优备考卷系列答案
经纶学典黑白题系列答案
创意课堂高考总复习指导系列答案
高中总复习学海高手系列答案
相关题目
为了解某班学生喜爱打羽毛球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打羽毛球
不喜爱打羽毛球
合计
男生
5
女生
10
50
已知在全部50人中随机抽取1人抽到不喜爱打羽毛球的学生的概率
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打羽毛球与性别有关?说明你的理由;
(3)已知喜爱打羽毛球的10位女生中,
还喜欢打篮球,
还喜欢打乒乓球,
还喜欢踢足球,现在从喜欢打篮球、喜欢打乒乓球、喜欢踢足球的6位女生中各选出1名进行其他方面的调查,求女生
和
不全被选中的概率.下面的临界值表供参考:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式:
其中
.)
(本小题满分12分)从2003年开始,我国就通过实施高校自主招生探索人才选拔制度改革,允许部分高校拿出一定比例的招生名额,选拔那些有特殊才能的学生。某学生参加一个高校的自主招生考试,考试分笔试和面试两个环节,笔试有A、B两个题目,该学生答对A、B两题的概率分别为
、
,两题全部答对方可进入面试。面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为
,至少答对一题即可被录取。(假设每个环节的每个问题回答正确与否是相对独立的)
(I)求该学生被学校录取的概率;
(II)设该学生答对题目的个数为ξ,求ξ的分布列和数学期望。
(本小题满分12分)
袋中有
个白球和
个黑球,每次从中任取
个球
,每次取出黑球后不再放
回去,直到取出白球为止.求取球次数
的分布列,并求出
的期望值和方差.
同时抛掷两枚骰子,则至少有一个5点或6点的概率是( )
A.
B.
C.
D.
种植某种树苗,成活率为
,现采用随机模拟的方法估计该树苗种植
棵恰好
棵成活的概率,先由计算机产生
到
之间取整数值的随机数,指定
至
的数字代表成
活,
代表不成活,再以每
个随机数为一组代表
次种植的结果。经随机模拟产生如下
组随机数:
据此估计,该树苗种植
棵恰好
棵成活的概率为
A.
B.
C.
D.
(本小题满分12分) 甲、乙两人在一场五局三胜制的象棋比赛中,规定甲或乙无论谁先赢满三局就获胜,并且比赛就此结束.现已知甲、乙两人每比赛一局甲取胜的概率是
,乙取胜的概率为
,且每局比赛的胜负是独立的,试求下列问题:
(Ⅰ)比赛以甲3胜1而结束的概率;
(Ⅱ)比赛以乙3胜2而结束的概率;
(Ⅲ)设甲获胜的概率为a,乙获胜的概率为b,求a:b的值.
若某学校要从5名男生和2名女生中选出3人作为志愿者,则选出的志愿者中男女生均不少于1名的概率是
设有一个正方形网格,其中每个最小正方形的边长都等于6.现用直径等于2的硬币投掷到此网格上,则硬币落下后与格线有公共点的概率为 ( )
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总