题目内容

已知数列满足a1=1,an+1=2an+1(n∈N*)
(1)求证:数列{an+1}是等比数列;
(2)求{an}的通项公式.
分析:(1)给等式an+1=2an+1两边都加上1,右边提取2后,变形得到
an+1+1
an+1
等于2,所以数列{an+1}是等比数列,得证;
(2)设数列{an+1}的公比为2,根据首项为a1+1等于2,写出数列{an+1}的通项公式,变形后即可得到{an}的通项公式.
解答:解:(1)由an+1=2an+1得an+1+1=2(an+1),
又an+1≠0,
an+1+1
an+1
=2,
即{an+1}为等比数列;
(2)由(1)知an+1=(a1+1)qn-1
即an=(a1+1)qn-1-1=2•2n-1-1=2n-1.
点评:此题考查学生掌握等比数列的性质并会确定一个数列为等比数列,灵活运用等比数列的通项公式化简求值,是一道综合题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网