题目内容
【题目】图甲表示在不同温度条件下CO2浓度对某植物净光合速率的影响;图乙表示将该种植物叶片置于适宜的光照和温度条件下,叶肉细胞中C5的相对含量随细胞间隙CO2浓度的变化曲线。请回答下列有关问题:
(1)据甲图可知,当CO2浓度为600μmol·L-1时,该植物叶肉细胞中能产生ATP的细胞器有______,当CO2浓度为200μmol·L-1、温度28℃条件下,该植物净光合速率为零,则该植物叶肉细胞中光合作用强度______呼吸作用强度(填“>”、“=”或“<”),在该CO2浓度时,20℃和15℃条件下该植物净光合速率明显大于28℃,原因可能是______。
(2)CO2在RuBP羧化酶作用下与C5结合生成C3,据此推测,RuBP羧化酶分布在______中。图乙中,A→B的变化是由于叶肉细胞吸收CO2速率______(填“增加”或“减少”),B→C保持稳定的内因是受到______限制。
(3)研究发现,绿色植物中RuBP羧化酶具有双重活性,催化如下图所示的两个方向的反应,反应的相对速度取决于O2和CO2的相对浓度。
在叶绿体中,在RuBP羧化酶催化下C5与______反应,形成的______进入线粒体放出CO2,称之为光呼吸。据图推测,CO2浓度倍增可以使光合产物的积累增加,原因是______。
【答案】叶绿体、线粒体 > 实际光合速率都不高,而28℃时的呼吸速率很强 叶绿体基质 增加 RuBP羧化酶数量(浓度) O2 二碳化合物(C2) 高浓度CO2可减少光呼吸
【解析】
据图分析,图甲中实验的自变量是CO2和温度,因变量是净光合呼吸速率;随着CO2浓度的增加,在三种温度下的净光合速率都在一定范围内逐渐增大;图乙中,随着细胞间隙CO2浓度的逐渐增加,叶肉细胞中C5的相对含量逐渐下降,最后区趋于稳定。
(1)据甲图可知,当CO2浓度为600μmol·L-1时,此时净光合速率大于0,该植物叶肉细胞中能产生ATP的细胞器有线粒体和叶绿体。当CO2浓度为200μmol·L-1、温度28℃条件下,根据图中显示,该植物净光合速率为零,即植物的总光合速率=植物的呼吸速率;但由于只有植物叶肉细胞中进行光合作用,因此植物叶肉细胞光合作用强度大于呼吸作用强度;在该CO2浓度下,15℃、20℃、28℃条件下植物的实际光合速率都不高,但28℃比15℃、20℃时的呼吸速率更高,因此20℃和15℃条件下该植物净光合速率明显大于28℃。
(2)CO2在RuBP羧化酶作用下与C5结合生成C3,据此推测,RuBP羧化酶分布在叶绿体基质中。图乙中,A→B段显示,随着细胞间隙CO2浓度的增加,叶肉细胞中C5的含量逐渐降低,说明C5与CO2结合生成C3的过程加快,细胞中生成的C3增多,在一定程度上促进了C3的还原过程,进而使叶肉细胞吸收CO2的速率增加;B→C段显示,叶肉细胞中C5的含量不再随着细胞间隙CO2浓度的增加而增加,说明此时叶片的净光合速率等于呼吸速率,RuBP羧化酶量限制了光合速率。
(3)据图可知,RuBP羧化酶的作用是催化C5与CO2结合形成C3,或者催化C5与O2结合形成C3和C2即光呼吸过程,后者中形成的C2进入线粒体反应后释放出CO2,因此高浓度的CO2可减少光呼吸,导致光呼吸消耗的有机物减少,所以CO2浓度倍增可以使光合产物的积累增加。
