题目内容

【题目】如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:

(1)BE=EC;
(2)ADDE=2PB2

【答案】
(1)证明:连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,

∵PC=2PA,D为PC的中点,

∴PA=PD,

∴∠PAD=∠PDA,

∵∠PDA=∠CDE,

∴∠OEA+∠CDE=∠OAE+∠PAD=90°,

∴OE⊥BC,

∴E是 的中点,

∴BE=EC;


(2)证明:∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,

∴PA2=PBPC,

∵PC=2PA,

∴PA=2PB,

∴PD=2PB,

∴PB=BD,

∴BDDC=PB2PB,

∵ADDE=BDDC,

∴ADDE=2PB2


【解析】(1)连接OE,OA,证明OE⊥BC,可得E是 的中点,从而BE=EC;(2)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得ADDE=2PB2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网