题目内容

【题目】(选修4﹣1:几何证明选讲)
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.

(1)证明:DB=DC;
(2)设圆的半径为1,BC= ,延长CE交AB于点F,求△BCF外接圆的半径.

【答案】
(1)证明:连接DE交BC于点G.

由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,

∴∠CBE=∠BCE,BE=CE.

又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.

∴△DBE≌△DCE,∴DC=DB.


(2)证明:由(1)可知:∠CDE=∠BDE,DB=DC.

故DG是BC的垂直平分线,∴BG=

设DE的中点为O,连接BO,则∠BOG=60°.

从而∠ABE=∠BCE=∠CBE=30°.

∴CF⊥BF.

∴Rt△BCF的外接圆的半径=


【解析】(1)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(2)由(1)可知:DG是BC的垂直平分线,即可得到BG= .设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网