题目内容

把一根均匀电阻丝弯折成一个闭合的等边三角形abc,如图所示,图中d点为底边ab的中心.如果cd两点间的电阻为9欧姆,则(  )
分析:△abc为等边三角形,设一个边的电阻为R,c、d两端的电阻为dac和dbc并联,据此可求一个边的电阻;
ac两点的电阻是ac和abc并联,根据并联电阻的特点求解;
ad两点的电阻是ad和acbd并联,根据并联电阻的特点求解.
解答:解:(1)设一个边的电阻为R,
则Rdac=Rdbc=
3
2
R,
c、d两点间的电阻为Rdac和Rdbc并联,
Rcd=
1
2
×Rdac=
1
2
×
3
2
R=9Ω,
∴R=12Ω;
ac两点间的电阻是Rac和Rabc并联,如图,

Rac=R=12Ω,Rabc=2R=24Ω,
R=
Rac×Rabc
Rac+Rabc
=
12Ω×24Ω
12Ω+24Ω
=8Ω;故A错误,B正确;
(2)ad两点间的电阻是Rad和Racbd并联,
Rad=
1
2
R=
1
2
×12Ω=6Ω,Racbd=2R+
1
2
R=
5
2
R=
5
2
×12Ω=30Ω,
R′=
Rad×Rabcd
Rad+Rabcd
=
6Ω×30Ω
6Ω+30Ω
=5Ω.故CD错误.
故选B.
点评:本题考查了电阻并联的计算,能从图看出两点间的电阻为两端导线并联是本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网