题目内容
流量表示单位时间内通过某一横截面的流体的体积,用字母Q表示,定义式为Q=V | t |
(1)如图1所示,水流在粗细均匀的水平管道内向右匀速流动,设水流速度为v,管内通道的横截面积为S.取一段管道AB,水从A端流到B端所用时间为t,则AB间水柱的体积V=
(2)如图2所示的连通器,当阀门K关闭时,C、D两竖直细玻璃管中液面相平.打开阀门K,待水流稳定后,比较C、D玻璃管中的水面高度,
分析:(1)已知水流的速度和流动的时间,根据公式S=vt可求水流过的路程,还知管道的横截面积,可求水柱的体积,
已知Q=
,把体积表达式代入,可求流量的表达式.
(2)D管比C管的横截面积小,横截面积越小,水流动速度快,产生的压强小,横截面积大,水流动速度慢,产生的压强大,能支持的水柱就越高.
已知Q=
V |
t |
(2)D管比C管的横截面积小,横截面积越小,水流动速度快,产生的压强小,横截面积大,水流动速度慢,产生的压强大,能支持的水柱就越高.
解答:解:(1)水在管道内流过的距离h=vt,所以水柱的体积V=Sh=Svt,
因为Q=
,所以Q=
=Sv.
(2)C管横截面积大,水流动速度慢,产生的压强大,能支持的水柱就高,所以C管水面高.
故答案为:Svt;Sv;C.
因为Q=
V |
t |
Svt |
t |
(2)C管横截面积大,水流动速度慢,产生的压强大,能支持的水柱就高,所以C管水面高.
故答案为:Svt;Sv;C.
点评:本题考查水流量表达式的推导和流体压强与流速的关系,关键知道,水流动速度越快,产生的压强越小.
练习册系列答案
相关题目