【题目】对钝角α,定义三角函数值如下:
sinα=sin(180°-α),cosα=-cos(180°-α).
(1)求sin120°,cos120°的值;
(2)若一个钝角三角形的三个内角比是1:1:4,点A,B是这个三角形的两个顶点,sinA,cosB是方程4x2-mx-1=0的两个不相等的实数根,求m的值及∠A和∠B的度数.
【题目】一枚棋子放在边长为1个单位长度的正六边形
ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在
一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀
后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1
个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位
长度.
棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法
求解)
【题目】为增强学生的身体素质,泰兴市教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
⑴在这次调查中一共调查了多少名学生?
⑵求户外活动时间为1.5小时的人数,并补全频数分布直方图;
⑶求表示户外活动时间 1小时的扇形圆心角的度数;
⑷本次调查中,学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?
【题目】对于一个函数,当自变量x取n时,函数值y等于4-n,我们称n为这个函数的“二合点”,如果二次函数y=mx2+x+1有两个相异的二合点x1,x2,且x1<x2<1,则m的取值范围是______.
【题目】 如图,等边△ABC中,点D是BC上任一点,以AD为边作∠ADE=∠ADF=60°,分别交AC,AB于点E,F.
(1)求证:AD2=AEAC.
(2)已知BC=2,设BD的长为x,AF的长为y.
①求y关于x的函数表达式;
②若四边形AFDE外接圆直径为,求x的值
【题目】如图,□ABCD中,BF平分∠ABC交AD于点F,CE平分∠DCB交AD于点E,BF和CE相交于点P.
(1)求证:AE=DF.
(2)已知AB=4,AD=5.
①求的值;
②求四边形ABPE的面积与△BPC的面积之比.
【题目】如图,在△ABC中,.以AC为直径的O交AB于点D,交BC于点E.
(1)求证:弧DE=弧CE.
(2)若,,求的值.
【题目】如图,矩形窗户边框ABCD由矩形AEFD,矩形BNME,矩形CFMN组成,其中AE:BE=1:3.已知制作一个窗户边框的材料的总长是6米,设BC=x(米),窗户边框ABCD的面积为S(米2)
(1)①用x的代数式表示AB;
②求x的取值范围.
(2)求当S达到最大时,AB的长.
【题目】已知二次函数y=x2﹣x+m的图象经过点A(1,﹣2)
(1)求此函数图像与坐标轴的交点坐标;
(2)若P(-2,y1),Q(5,y2)两点在此函数图像上,试比较y1,y2的大小
【题目】已知二次函数y=ax2﹣4ax+3a.
(1)若a=1,则函数y的最小值为_______.
(2)当1≤x≤4时,y的最大值是4,则a的值为_______.