题目内容
如图,在△ABC中,∠ACB=90º, D是AC上的一点,且AD=BC,DEAC于D,∠EAB=90º.
求证:AB=AE.
求证:AB=AE.
证明见解析.
试题分析:由垂直的性质就可以得出∠B=∠EAD,再根据AAS就可以得出△ABC≌△EAD,就可以得出AB=AE.
试题解析:∵∠EAB=90°,∴∠EAD+∠CAB=90°.
∵∠ACB=90°,∴∠B+∠CAB=90°.∴∠B=∠EAD.
∵ED⊥AC,∴∠EDA=90°.∴∠EDA=∠ACB.
在△ACB和△EDA中,∠B=∠EAD,∠C=∠EDA,BC=AD,
∴△ACB≌△EDA(AAS),
∴AB=AE.
练习册系列答案
相关题目