题目内容
【题目】如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.
(1)直接写出AB与AP所满足的数量关系:_____,AB与AP的位置关系:_____;
(2)将△ABC沿直线l向右平移到图2的位置时,EP交AC于点Q,连接AP,BQ,求证:AP=BQ;
(3)将△ABC沿直线l向右平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ,试探究AP=BQ是否仍成立?并说明理由.
【答案】(1)AB=AP,AB⊥AP;(2)证明见解析;(3)成立,理由见解析.
【解析】试题分析:(1)AB=AP,AB⊥AP,已知AC⊥BC且AC=BC,可得△ABC为等腰直角三角形,所以∠BAC=∠ABC=45°,根据已知条件易证∠PEF=45°,即可得∠BAP=90°,结论得证;(2)根据已知条件易证Rt△BCQ≌Rt△ACP,根据全等三角形的性质即可得结论;(3)结论仍成立,类比(2)方法证明即可.
试题解析:
(1)AB=AP;AB⊥AP;
证明:∵AC⊥BC且AC=BC,
∴△ABC为等腰直角三角形,
∴∠BAC=∠ABC=(180°﹣∠ACB)=45°,
易知,△ABC≌△EFP,
同理可证∠PEF=45°,
∴∠BAP=45°+45°=90°,
∴AB=AP且AB⊥AP;
故答案为:AB=AP AB⊥AP
(2)证明:
∵EF=FP,EF⊥FP
∴∠EPF=45°.
∵AC⊥BC,
∴∠CQP=∠EPF=45°
∴CQ=CP
在 Rt△BCQ和Rt△ACP中,
∴Rt△BCQ≌Rt△ACP (SAS).
∴AP=BQ.
(3)AP=BQ成立,理由如下:
∵EF=FP,EF⊥FP,
∴∠EPF=45°.
∵AC⊥BC
∴∠CPQ=∠EPF=45°
∴CQ=CP
在 Rt△BCQ和Rt△ACP中,
∴Rt△BCQ≌Rt△ACP (SAS).
∴AP=BQ.