题目内容
【题目】已知,如图,正方形ABCD的对角线AC,BD相交于点O,正方形A′B′C′D′的顶点A′与点O重合,A′B′交BC于点E,A′D′交CD于点F.
(1)求证:OE=OF;
(2)若正方形ABCD的对角线长为4,求两个正方形重叠部分的面积为
【答案】
(1)证明:∵正方形ABCD的对角线AC、BD交于点O
∴∠BOC=90°,∠OBC=∠OCD=∠OCF=45°,OB=OC,
∵正方形A'B'C'D'的A'B'交BC于点E,A'D'交CD于点F.
∴∠EOF=90°
∵∠BOE=∠EOF﹣∠EOC=90°﹣∠EOC
∠COF=∠BOC﹣∠EOC=90°﹣∠EOC
∴∠BOE=∠COF.
在△OBE和△OCF中,
,
∴△BOE≌△COF(ASA).
∴OE=OF
(2)2
【解析】(2)解:∵△BOE≌△COF, ∴S△BOE=S△COF
∴S△EOC+S△COF=S△EOC+S△BOE ,
即S四边形OECF=S△BOC .
∵S△BOC=2,
∴两个正方形重叠部分的面积为2.
故答案为:2.
(1)由正方形的性质可以得出△BOE≌△COF,由全等三角形的性质就可以得出OE=OF;(2)由全等可以得出S△BOE=S△COF , 就可以得出S四边形OECF=S△BOC , S△BOC的面积就可以得出结论.
练习册系列答案
相关题目