题目内容

【题目】如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.

(1)求证:四边形BFEP为菱形;
(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;
①当点Q与点C重合时(如图2),求菱形BFEP的边长;

②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.

【答案】
(1)

证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,

∴点B与点E关于PQ对称,

∴PB=PE,BF=EF,∠BPF=∠EPF,

又∵EF∥AB,

∴∠BPF=∠EFP,

∴∠EPF=∠EFP,

∴EP=EF,

∴BP=BF=EF=EP,

∴四边形BFEP为菱形


(2)

解:①∵四边形ABCD是矩形,

∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,

∵点B与点E关于PQ对称,

∴CE=BC=5cm,

在Rt△CDE中,DE= =4cm,

∴AE=AD﹣DE=5cm﹣4cm=1cm;

在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,

∴EP2=12+(3﹣EP)2

解得:EP= cm,

∴菱形BFEP的边长为 cm;

②当点Q与点C重合时,如图2:

点E离点A最近,由①知,此时AE=1cm;

当点P与点A重合时,如图3所示:

点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,

∴点E在边AD上移动的最大距离为2cm


【解析】(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD﹣DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP= cm即可;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网