题目内容
【题目】如图,反比例函数的图像与一次函数的图像交于点,点的横坐标是,点是第一象限内反比例函数图像上的动点,且在直线的上方.
(1)若点的坐标是,则 , ;
(2)设直线与轴分别交于点,求证:是等腰三角形;
(3)设点是反比例函数图像位于之间的动点(与点不重合),连接,比较与的大小,并说明理由.
【答案】(1), .(2)详见解析;(3),理由详见解析.
【解析】
(1)由P点坐标可直接求得k的值,过P、B两点,构造矩形,利用面积的和差可求得△PBO的面积,利用对称,则可求得△PAB的面积;
(2)可设出P点坐标,表示出直线PA、PB的解析式,则可表示出M、N的坐标,作PG⊥x轴于点G,可求得MG=NG,即G为MN的中点,则可证得结论;
(3)连接QA交x轴于点M′,连接QB并延长交x轴于点N′,利用(2)的结论可求得∠MM′A=∠QN′O,结合(2)可得到∠PMN=∠PNM,利用外角的性质及对顶角进一步可求得∠PAQ=∠PBQ.
(1)∵点P(1,4)在反比例函数图象上,
∴k=4×1=4,
∵B点横坐标为4,
∴B(4,1),
连接OP,过P作x轴的平行线,交y轴于点P′,过B作y轴的平行线,交x轴于点B′,两线交于点D,如图1,
则D(4,4),
∴PP′=1,P′O=4,OB′=4,BB′=1,
∴BD=4-1=3,PD=4-1=3,
∴S△POB=S矩形OB′DP′-S△PP′O-S△BB′O-S△BDP=16-2-2-4.5=7.5,
∵A、B关于原点对称,
∴OA=OB,
∴S△PAO=S△PBO,
∴S△PAB=2S△PBO=15;
(2)∵点P是第一象限内反比例函数图象上的动点,且在直线AB的上方,
∴可设点P坐标为(m,),且可知A(-4,-1),
设直线PA解析式为y=k′x+b,
把A、P坐标代入可得,解得,
∴直线PA解析式为,令y=0可求得x=m-4,
∴M(m-4,0),
同理可求得直线PB解析式为,令y=0可求得x=m+4,
∴N(m+4,0),
作PG⊥x轴于点G,如图2,则G(m,0),
∴MG=m-(m-4)=4,NG=m+4-m=4,
∴MG=NG,即G为MN中点,
∴PG垂直平分MN,
∴PM=PN,即△PMN是等腰三角形;
(3)∠PAQ=∠PBQ,理由如下:
连接QA交x轴于M′,连接QB并延长交x轴于点N′,如图3,
由(2)可得PM′=PN′,即∠QM′O=∠QN′O,
∴∠MM′A=∠QN′O,
由(2)知∠PMN=∠PNM,
∴∠PMN-∠MM′A=∠PNM-∠QN′O,
∴∠PAQ=∠NBN′,
又∠NBN′=∠PBQ,
∴∠PAQ=∠PBQ.
【题目】问题背景:
小红同学在学习过程中遇到这样一道计算题“计算4×2.112-4×2.11×2.22+2.222”,她觉得太麻烦,估计应该有可以简化计算的方法,就去请教崔老师.崔老师说:你完成下面的问题后就可能知道该如何简化计算啦!
获取新知:
请你和小红一起完成崔老师提供的问题:
(1)填写下表:
x=-1,y=1 | x=1,y=0 | x=3,y=2 | x=2,y=-1 | x=2,y=3 | |
A=2x-y | -3 | 2 | 4 | 5 | 1 |
B=4x2-4xy+y2 | 9 | 4 | 16 |
(2)观察表格,你发现A与B有什么关系?
解决问题:
(3)请利用A与B之间的关系计算:4×2.112-4×2.11×2.22+2.222.