题目内容

【题目】在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别相交于A(﹣3,0),B(0,﹣3)两点,二次函数y=x2+mx+n的图象经过点A.

(1)求一次函数y=kx+b的解析式;
(2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n的值;
(3)当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m,n的值.

【答案】
(1)

解:A(﹣3,0),B(0,﹣3)代入y=kx+b得

,解得

∴一次函数y=kx+b的解析式为:y=﹣x﹣3


(2)

解:二次函数y=x2+mx+n图象的顶点为(﹣

∵顶点在直线AB上,

= ﹣3,

又∵二次函数y=x2+mx+n的图象经过点A(﹣3,0),

∴9﹣3m+n=0,

∴组成方程组为

解得


(3)

解:∵二次函数y=x2+mx+n的图象经过点A.

∴9﹣3m+n=0,

∵当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,

①如图1,当对称轴﹣3<﹣ <0时

最小值为 =﹣4,与9﹣3m+n=0,组成方程组为

解得 (由﹣3<﹣ <0知不符合题意舍去)

所以

②如图2,当对称轴﹣ >0时,在﹣3≤x≤0时,x为0时有最小值为﹣4,

把(0,﹣4)代入y=x2+mx+n得n=﹣4,

把n=﹣4代入9﹣3m+n=0,得m=

∵﹣ >0,

∴m<0,

∴此种情况不成立,

③当对称轴﹣ =0时,y=x2+mx+n的最小值为﹣4,

把(0,﹣4)代入y=x2+mx+n得n=﹣4,

把n=﹣4代入9﹣3m+n=0,得m=

∵﹣ =0,

∴m=0,

∴此种情况不成立,

④当对称轴﹣ ≤﹣3时,最小值为0,不成立

综上所述m=2,n=﹣3.


【解析】(1)利用待定系数法求出解析式,(2)先表示出二次函数y=x2+mx+n图象的顶点,利用直线AB列出式子,再与点A在二次函数上得到的式子组成方程组求得m,n的值,(3)本题要分四种情况①当对称轴﹣3<﹣ <0时,②当对称轴﹣ >0时,③当对称轴﹣ =0时,④当对称轴﹣ ≤﹣3时,结合二次函数y=x2+mx+n的图象经过点A得出的式子9﹣3m+n=0,求出m,n但一定要验证是否符合题意.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网