题目内容

如图,边长为2
3
的等边三角形ABC内接于⊙0,点D在弧AC上运动,但与A、C两点不重合,连结AD并延长交BC的延长线于P.
(1)求⊙0的半径;
(2)设AD为x,AP为y,求出y与x的函数关系式及自变量x的取值范围.
分析:(1)过O作OE⊥AB于E,连接OA,根据等边三角形的性质和垂径定理可以E是AB的中点∠EAO=30°这样解直角三角形就可以求出半径了;
(2)连接CD,利用圆内接四边形的性质可以得到∠ADC=∠ACP=120°,还有一个公共角,可以证明△ADC∽△ACP,然后利用相似三角形的性质就可以求出函数的关系式.
解答:解:解:(1)过O作OE⊥AB于E,连接OA.
在Rt△AEO中,∠EAO=30°
AE=
AB
2

AE
OA
=cos30°,
∴OA=2

(2)连接CD,则∠ABC+∠ADC=180°
又∠ACB+∠ACP=180°,∠ABC=∠ACB=60°
∴∠ADC=∠ACP=120°
又∵∠CAD=∠PAC
∴△ADC∽△ACP
AD
AC
AC
AP

∴AC2=AD•AP
∴y=
(2
3
)2
x
=
12
x
(0<x<2
3
).
点评:此题综合性比较强,把一元二次方程,等边三角形,相似三角形,求函数关系式等知识,正确作出辅助线是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网