题目内容

【题目】已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.
(1)k的值是
(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y= 图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若 = ,则b的值是

【答案】
(1)-2
(2)
【解析】解:(1)设点P的坐标为(m,n),则点Q的坐标为(m﹣1,n+2),
依题意得:
解得:k=﹣2.
故答案为:﹣2.
2)∵BO⊥x轴,CE⊥x轴,
∴BO∥CE,
∴△AOB∽△AEC.
又∵ =
= =
令一次函数y=﹣2x+b中x=0,则y=b,
∴BO=b;
令一次函数y=﹣2x+b中y=0,则0=﹣2x+b,
解得:x= ,即AO=
∵△AOB∽△AEC,且 =

∴AE= AO= b,CE= BO= b,OE=AE﹣AO= b.
∵OECE=|﹣4|=4,即 b2=4,
解得:b=3 ,或b=﹣3 (舍去).
故答案为:3
本题考查了反比例函数与一次函数的交点问题、反比例函数系数k的几何意义以及相似三角形的判定及性质.(1)设出点P的坐标,根据平移的特性写出点Q的坐标,由点P、Q均在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,即可得出关于k、m、n、b的四元一次方程组,两式做差即可得出k值;(2)根据BO⊥x轴,CE⊥x轴可以找出△AOB∽△AEC,再根据给定图形的面积比即可得出 ,根据一次函数的解析式可以用含b的代数式表示出来线段AO、BO,由此即可得出线段CE、AE的长度,利用OE=AE﹣AO求出OE的长度,再借助于反比例函数系数k的几何意义即可得出关于b的一元二次方程,解方程即可得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网