题目内容
【题目】在一节数学课上,老师布置了一个任务:如图1,在Rt△ABC中,∠B=90°,用尺规作图作矩形ABCD.同学们开动脑筋,想出了很多办法,其中小亮作图如图2,他向同学们分享了作法:
①分别以点A、C为圆心,大于AC长为半径画弧,两弧分别交于点E、F,连接E、F交AC于点O;
②作射线BO,在BO上取点D,使OD=OB;
③连结AD、CD则四边形ABCD就是所求作的矩形.
请用文字写出小亮的每一步作图的依据① ;② ;③ .
【答案】到线段两端距离相等的点在线段的垂直平分线上;直角三角形斜边上的中线等于斜边的一半;对角线互相平分且相等的四边形是矩形
【解析】
根据到线段两端距离相等的点在线段的垂直平分线上可判断EF垂直平分AC,再根据直角三角形斜边上的中线等于斜边的一半得到BO=OA=OC,则由OD=OB得到BO=OA=OC=OD,从而根据矩形的判定方法可判断四边形ABCD就是所求作的矩形.
由作法得EF垂直平分AC,则OA=OC,
则BO为Rt△ABC斜边上的中线,
∴BO=OA=OC,
∵OD=OB,
∴BO=OA=OC=OD,
∴四边形ABCD为矩形.
∴小亮的作图依据为:①到线段两端距离相等的点在线段的垂直平分线上;②直角三角形斜边上的中线等于斜边的一半;③对角线互相平分且相等的四边形是矩形.
故答案为:到线段两端距离相等的点在线段的垂直平分线上,直角三角形斜边上的中线等于斜边的一半,对角线互相平分且相等的四边形是矩形.
练习册系列答案
相关题目