题目内容
(-)÷,其中x满足方程3x2+3x-5=0.
解:原式=[-]÷
=•
=-•
=-,
∵3x2+3x-5=0,
∴x2+x=,
则原式=-=-.
分析:原式被除数括号中两项通分并利用同分母分式的减法法则计算,除数分子利用平方差公式分解因式,分母利用完全平方公式分解因式,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将已知方程变形后代入计算,即可求出值.
点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因数,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.
=•
=-•
=-,
∵3x2+3x-5=0,
∴x2+x=,
则原式=-=-.
分析:原式被除数括号中两项通分并利用同分母分式的减法法则计算,除数分子利用平方差公式分解因式,分母利用完全平方公式分解因式,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将已知方程变形后代入计算,即可求出值.
点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因数,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.
练习册系列答案
相关题目