题目内容
【题目】如图,正方形中,点在边上,,将沿对折至,延长交边于点,连接,.给出以下结论:①;②;③;④.其中所有正确结论的个数是( )
A.B.C.D.
【答案】B
【解析】
根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定Rt△ADG≌Rt△FDG,可判断①的正误;设正方形ABCD的边长为a,AG=FG=x,BG=ax,根据勾股定理得到x=a,得到BG=2AG,故②正确;根据已知条件得到△BEF是等腰三角形,易知△GED不是等腰三角形,于是得到△EBF与△DEG不相似,故③错误;连接CF,根据三角形的面积公式得到S△BFC=2S△BEF.故④错误.
解:如图,由折叠和正方形性质可知,DF=DC=DA,∠DFE=∠C=90°,
∴∠DFG=∠A=90°,
在Rt△ADG和Rt△FDG中,
,
∴Rt△ADG≌Rt△FDG(HL),故①正确;
设正方形ABCD的边长为a,AG=FG=x,BG=ax,
∵BE=EC,
∴EF=CE=BE=a
∴GE=a+x
由勾股定理得:EG2=BE2+BG2,
即:(a+x)2=(a)2+(a-x)2解得:x=
∴BG=2AG,
故②正确;
∵BE=EF,
∴△BEF是等腰三角形,易知△GED不是等腰三角形,
∴△EBF与△DEG不相似,
故③错误;
连接CF,
∵BE=CE,
∴BE=BC,
∴S△BFC=2S△BEF.
故④错误,
综上可知正确的结论的是2个.
故选:B.
练习册系列答案
相关题目