题目内容

【题目】【探究证明】某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.
(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.
如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证: =

(2)【结论应用】如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若 = ,则 的值为

(3)【联系拓展】如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求 的值.

【答案】
(1)解:过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,如图1,

∵四边形ABCD是矩形,∴AB∥DC,AD∥BC.

∴四边形AEFP、四边形BHGQ都是平行四边形,

∴AP=EF,GH=BQ.

又∵GH⊥EF,∴AP⊥BQ,

∴∠QAT+∠AQT=90°.

∵四边形ABCD是矩形,∴∠DAB=∠D=90°,

∴∠DAP+∠DPA=90°,

∴∠AQT=∠DPA.

∴△PDA∽△QAB,

=

=


(2)
(3)解:过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线于S,如图3,

则四边形ABSR是平行四边形.

∵∠ABC=90°,∴ABSR是矩形,

∴∠R=∠S=90°,RS=AB=10,AR=BS.

∵AM⊥DN,

∴由(1)中的结论可得 =

设SC=x,DS=y,则AR=BS=5+x,RD=10﹣y,

∴在Rt△CSD中,x2+y2=25①,

在Rt△ARD中,(5+x)2+(10﹣y)2=100②,

由②﹣①得x=2y﹣5③,

解方程组 ,得

(舍去),或

∴AR=5+x=8,

= = =


【解析】(2)解:如图2,

∵EF⊥GH,AM⊥BN,

∴由(1)中的结论可得 = =

= =

所以答案是

【考点精析】本题主要考查了勾股定理的概念和平行四边形的判定与性质的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网