题目内容
参加足球联赛的每两队之间都要进行一场比赛,共要比赛28场,共有多少个队参加足球联赛?
航空测量飞机在与地面平行的直线上飞行,且与一座山的山顶在同一铅锤平面内,已知飞机的飞行高度为5000米,速度为50米/秒,飞机在点A处观测山顶P的俯角为32°,经过30秒后到达B处,这时观测山顶P的俯角为45°,求山的高度.(结果精确到1米,参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62).
如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于A(1,0),B(﹣3,0)两点,现有经过点A的直线l:y=kx+b1与y轴交于点C,与抛物线的另个交点为D.
(1)求抛物线的函数表达式;
(2)若点D在第二象限且满足CD=5AC,求此时直线1的解析式;在此条件下,点E为直线1下方抛物线上的一点,求△ACE面积的最大值,并求出此时点E的坐标;
(3)如图,设P在抛物线的对称轴上,且在第二象限,到x轴的距离为4,点Q在抛物线上,若以点A,D,P,Q为顶点的四边形能否成为平行四边形?若能,请直接写出点Q的坐标;若不能,请说明理由.
若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是( )
A. m≥﹣1 B. m≥﹣1且m≠0 C. m>﹣1且m≠0 D. m≠0
如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,DE⊥AC,垂足为E,交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)若∠C=60°,AC=12,求的长.
(3)若tanC=2,AE=8,求BF的长.
计算:()﹣1﹣20180+|﹣1|=_____;
若关于x的方程ax﹣4=a的解是x=3,则a的值是( )
A. ﹣2 B. 2 C. ﹣1 D. 1
如图,四边形和都是菱形,连接,,若,则的面积为________.
某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.