题目内容
如图,某海滨浴场的沿岸可以看作直线,1号救生员在岸边的A点看到海中的B点有人求救,便立即向前跑300 m到离B点最近的D点,再跳入海中游到B点救助;若每位救生员在岸上跑步的速度都是6 m/s,在水中游泳的速度都是2 m/s,∠BAD=45°.
(1)请问1号救生员的做法是否合理?
(2)若2号救生员从A跑到C,再跳入海中游到B点救助,且∠BCD=65°,请问谁先到达点B?(参考数据:sin65°≈0.9,cos65°≈0.4,tan65°≈2,≈1.4,结果精确到0.1 m.)
答案:
解析:
解析:
(1)由题意可得,AB=300,BD=300,∴直接营救的时间为150s,而1号救生员用的时间为200s.∵150≈210>200,∴1号救生员的做法是合理的. (2)在Rt△BCD中,BC=≈≈333.3,CD=≈=150,∴2号救生员用的时间为333.3÷2+150÷6≈191.7,∴2号先到达点B. |
练习册系列答案
相关题目