题目内容
【题目】矩形 ABCD中,O为 AC 的中点,过点O的直线分别与AB,CD交于点E,F,连接 BF交AC于点M连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①△AOE≌△COF;②△EOB≌△CMB;③FB⊥OC,OM=CM;④四边形 EBFD 是菱形;⑤MB:OE=3:2其中正确结论的个数是( )
A. 5 B. 4 C. 3 D. 2
【答案】B
【解析】
作辅助线找全等三角形和特殊的直角三角形解题,见详解.
解:连接BD
∵四边形ABCD是矩形
∴AC=BD,AC、BD互相平分
∵O为AC中点
∴BD也过O点
∴OB=OC
∵∠COB=60°,OB=OC
∴△OBC是等边三角形
∴OB=BC=OC,∠OBC=60°
∵FO=FC,BF=BF
∴△OBF≌△CBF(SSS)
∴△OBF与△CBF关于直线BF对称
∴FB⊥OC,OM=CM.故③正确
∵∠OBC=60°
∴∠ABO=30°
∵△OBF≌△CBF
∴∠OBM=∠CBM=30°
∴∠ABO=∠OBF
∵AB∥CD
∴∠OCF=∠OAE
∵OA=OC
可得△AOE≌△COF,故①正确
∴OE=OF
则四边形EBFD是平行四边形,又可知OB⊥EF
∴四边形EBFD是菱形.故④正确
∴△EOB≌△FOB≌△FCB.则②△EOB≌△CMB错误
∵∠OMB=∠BOF=90°,∠OBF=30°,
设MB=a,则OM=a,OB=2a,
OF=OM,
∵OE=OF
∴MB:OE=3:2.则⑤正确
综上一共有4个正确的,
故选B.
练习册系列答案
相关题目