题目内容

如图,已知抛物线y1=-3x2+3,直线y2=3x+3,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:
①当x>0时,y1>y2;②使得M大于3的x值不存在;③当x<0时,x值越大,M值越小; ④使得M=1的x值是-
2
3
6
3

其中正确的是(  )
分析:若y1=y2,记M=y1=y2.首先求得抛物线与直线的交点坐标,利用图象可得当x<-1时,利用函数图象可以得出y2>y1;当-1<x<0时,y1>y2;当x>0时,利用函数图象可以得出y2>y1;然后根据当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;即可求得答案.
解答:解:∵当y1=y2时,即-3x2+3=3x+3时,
解得:x=0或x=-1,
∴当x<-1时,利用函数图象可以得出y2>y1;当-1<x<0时,y1>y2;当x>0时,利用函数图象可以得出y2>y1
∴①错误;
∵抛物线y1=-3x2+3,直线y2=3x+3,与y轴交点坐标为:(0,3),当x=0时,M=3,抛物线y1=-3x2+3,最大值为3,故M大于3的x值不存在;
∴使得M大于3的x值不存在,
∴②正确;
∵抛物线y1=-3x2+3,直线y2=3x+3,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;
∴当x<0时,根据函数图象可以得出x值越大,M值越大;
∴③错误;
∵如图:当-1<x<0时,y1>y2
∴使得M=1时,y2=3x+3=1,解得:x=-
2
3

当x>0时,y2>y1
使得M=1时,即y1=-3x2+3=1,解得:x1=
6
3
,x2=-
6
3
(舍去),
∴使得M=1的x值是-
2
3
6
3

∴④正确;
故选B.
点评:本题主要考查了二次函数与一次函数综合应用.注意掌握函数增减性是解题关键,注意数形结合思想与方程思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网