题目内容
【题目】如图,已知抛物线y=﹣x2+bx+C的图象过点A(﹣3,0),C(0,3).
(1)求抛物线的解析式;
(2)探究:在抛物线的对称轴DE上是否存在点P,使得点P到直线AD和到x轴的距离相等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)探究:在对称轴DE左侧的抛物线上是否存在点F,使得2S△FBC=3S△EBC?若存在,求出点F的坐标;若不存在,说明理由.
【答案】(1)y=﹣x2﹣2x+3,(2)存在,P点坐标为(﹣1,﹣1)或(﹣1,﹣﹣1);(3)点F的坐标是(,).
【解析】
试题分析:(1)把A、C两点坐标代入可求得b、c,可求得抛物线解析式;
(2)当点P在∠DAB的平分线上时,过P作PM⊥AD,设出P点坐标,可表示出PM、PE,由角平分线的性质可得到PM=PE,可求得P点坐标;当点P在∠DAB外角平分线上时,同理可求得P点坐标;
(3)可先求得△FBC的面积,过F作FQ⊥x轴,交BC的延长线于Q,可求得FQ的长,可设出F点坐标,表示出B点坐标,从而可表示出FQ的长,可求得F点坐标.
解:
(1)∵二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),
∴,解得,
∴抛物线的解析式y=﹣x2﹣2x+3,
(2)存在,
当P在∠DAB的平分线上时,如图1,作PM⊥AD,
设P(﹣1,m),则PM=PDsin∠ADE=(4﹣m),PE=m,
∵PM=PE,
∴(4﹣m)=m,m=﹣1,
∴P点坐标为(﹣1,﹣1);
当P在∠DAB的外角平分线上时,如图2,作PN⊥AD,
设P(﹣1,n),则PN=PDsin∠ADE=(4﹣n),PE=﹣n,
∵PN=PE,
∴(4﹣n)=﹣n,n=﹣﹣1,
∴P点坐标为(﹣1,﹣﹣1);
综上可知存在满足条件的P点,其坐标为(﹣1,﹣1)或(﹣1,﹣﹣1);
(3)∵抛物线的解析式y=﹣x2﹣2x+3,
∴B(1,0),
∴S△EBC=EBOC=3,
∵2S△FBC=3S△EBC,
∴S△FBC=,
过F作FQ⊥x轴于点H,交BC的延长线于Q,过F作FM⊥y轴于点M,如图3,
∵S△FBC=S△BQH﹣S△BFH﹣S△CFQ
=HBHQ﹣BHHF﹣QFFM
=BH(HQ﹣HF)﹣QFFM
=BHQF﹣QFFM
=QF(BH﹣FM)
=FQOB
=,
∴FQ=9,
∵BC的解析式为y=﹣3x+3,
设F(x0,﹣x02﹣2x0+3),
∴﹣3x0+3+x02+2x0﹣3=9,
解得:x0=或(舍去),
∴点F的坐标是(,).