题目内容
(2006•厦门模拟)如图,AB是斜靠在墙壁上的固定爬梯,梯脚B到墙脚C的距离1.6m,梯上一点D到墙面的距离1.4m,BD长0.5m,则梯子的长为( )
分析:可由平行线分线段成比例建立线段之间的关系,进而求解线段AB的长度即可.
解答:解:因为梯子每一条踏板均和地面平行,所以构成一组相似三角形,
即△ABC∽△ADE,则
=
,
设梯子长为x米,则
=
,
解得,x=4(m).
故选:B.
即△ABC∽△ADE,则
DE |
BC |
AD |
AB |
设梯子长为x米,则
x-0.5 |
x |
1.4 |
1.6 |
解得,x=4(m).
故选:B.
点评:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
练习册系列答案
相关题目