题目内容

如图,C是射线 OE上的一动点,AB是过点 C的弦,直线DA与OE的交点为D,现有三个论断: ①DA是⊙O的切线;②DA=DC;③ OD⊥OB.

请你以其中的两个论断为条件,另一个论断为结论,用序号写出一个真命题,

用“★★★”表示.并给出证明;我的命题是:                .

 

【答案】

我的命题是:①②⇒③

【解析】证明:连接OA,则OA⊥DA,

 

 

 

 

 

 

∵DA=DC,∴∠DAC=∠DCA,

∵OA=OB,∴∠B=∠OAB;∵∠OAB+∠DAC=90°,又∵∠OCB=∠DCA,∴∠B+∠OCB=90°,∴BO⊥CO.(其它方法酌情给分)

本题主要考查了切线的性质,根据等角的余角相等,等边对等角进行求解是本题的基本思路

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网