题目内容

(2013•南昌)如图,在平面直角坐标系中,反比例函数y=
kx
(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).
(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.
分析:(1)根据矩形性质得出AB=CD=2,AD=BC=4,即可得出答案;
(2)设矩形平移后A的坐标是(2,6-x),C的坐标是(6,4-x),得出k=2(6-x)=6(4-x),求出x,即可得出矩形平移后A的坐标,代入反比例函数的解析式求出即可.
解答:解:(1)∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).
∴AB=CD=2,AD=BC=4,
∴B(2,4),C(6,4),D(6,6);

(2)A、C落在反比例函数的图象上,
设矩形平移后A的坐标是(2,6-x),C的坐标是(6,4-x),
∵A、C落在反比例函数的图象上,
∴k=2(6-x)=6(4-x),
x=3,
即矩形平移后A的坐标是(2,3),
代入反比例函数的解析式得:k=2×3=6,
即A、C落在反比例函数的图象上,矩形的平移距离是3,反比例函数的解析式是y=
6
x
点评:本题考查了矩形性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网