题目内容
【题目】如图,直线图像与y轴、x轴分别交于A、B两点
(1)求点A、B坐标和∠BAO度数
(2)点C、D分别是线段OA、AB上一动点(不与端点重合),且CD=DA,设线段OC的长度为x ,,请求出y关于x的函数关系式以及定义域
(3)点C、D分别是射线OA、射线BA上一动点,且CD=DA,当ΔODB为等腰三角形时,求C的坐标(第(3)小题直接写出分类情况和答案,不用过程)
【答案】(1)A(0,3),B(),60°(2)(0<x<3)(3)(0,0),,(0,6)
【解析】
(1)对于一次函数解析式,分别令x与y为0求出对应的y与x的值,得到A、B两点坐标,然后再根据三角函数求出∠BAO的度数即可;
(2)先证明△ACD是等边三角形,根据等边三角形的性质可得AD=CD=AC=3-x,作DH⊥y轴于点H,用含x的式子表示出DH的长,然后根据三角形面积公式进行求解即可;
(3)当△ODB为等腰三角形时,分三种情况讨论:当OD=DB时;当BD=BO时;当OD=OB时,利用等边三角形的性质分别求出C点坐标即可.
(1)一次函数,
令,则有,解得:,,
令,得, ,
,
在 , ,
∵sin∠ABO=,
,
;
(2)过点D作DH⊥y轴,垂足为点H,
,
,
,
∴ΔADC是等边三角形,
,,
== ,
∵S△OCD=,
;
(3)由(1)知,在Rt△OAB中,OA=3,OB=3,∠BAO=60°,AB=6,∠ABO=30°,
当△ODB为等腰三角形时,分三种情况进行讨论:
①如图1,当OD=DB时,D在OB的垂直平分线上,则D为AB的中点,AD=AB=3,
∵CD=DA,∠CAD=60°,
∴△ACD是等边三角形,
∴AC=AD=3,
∴C与原点重合,
∴C点坐标为(0,0);
②如图2,当BD=BO=3时,AD=AB-BD=6-3,
∵CD=DA,∠CAD=60°,
∴△ACD是等边三角形,
∴AC=AD=6-3,
∴OC=OA-AC=3-(6-3)=3-3,
∴C点坐标为(0,3-3);
③如图3,当OD=OB=3时,∠ODB=∠OBD=30°,
∵∠AOD=∠BAO-∠ODB=60°-30°,
∴∠ODB=∠AOD=30°,
∴AD=OA=3,
∵CD=DA,∠CAD=60°,
∴△ACD是等边三角形,
∴AC=AD=3,
∴OC=OA+AC=3+3=6,
∴C点坐标为(0,6),
综上,点C的坐标为(0,0),,(0,6).
【题目】为了提高学生汉字书写的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试方法是:听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:
组别 | 成绩x(分) | 频数(人数) | 频率 |
一 | 50≤x<60 | 2 | 0.04 |
二 | 60≤x<70 | 10 | 0.2 |
三 | 70≤x<80 | 14 | b |
四 | 80≤x<90 | a | 0.32 |
五 | 90≤x<100 | 8 | 0.16 |
请根据表格提供的信息,解答以下问题:
(1)直接写出表中a= , b=;
(2)请补全右面相应的频数分布直方图;
(3)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
(4)请根据得到的统计数据,简要分析这些同学的汉字书写能力,并为提高同学们的书写汉字能力提一条建议(所提建议不超过20字)