题目内容
【题目】已知:如图,一次函数y=x+3的图象分别与x轴、y轴相交于点A、B,且与经过点C(2,0)的一次函数y=kx+b的图象相交于点D,点D的横坐标为4,直线CD与y轴相交于点E.
(1)直线CD的函数表达式为 ;(直接写出结果)
(2)点Q为线段DE上的一个动点,连接BQ.
①若直线BQ将△BDE的面积分为1:2两部分,试求点Q的坐标;
②点Q是否存在某个位置,将△BQD沿着直线BQ翻折,使得点D恰好落在直线AB下方的坐标轴上?若存在,求点Q的坐标;若不存在,请说明理由.
【答案】(1)y=3x﹣6;(2)①Q的坐标为(,﹣2)或(,2);②点Q的坐标为(3,3)或(,).
【解析】
(1)求出C、D两点坐标即可解决问题;
(2)①分两种情形S△BEQ=S△BDE或S△BEQ=S△BDE分别构建方程即可;
②分两种情形当:点D落在x正半轴上(记为点D1)时,如图2中.当点D落在y负半轴上(记为点D2)时,如图3中.分别求解即可
解:(1)由题意:D(4,6),C(2,0),
设直线CD的解析式为y=kx+b,则有 ,
解得 ,
∴直线CD的解析式为y=3x﹣6.
故答案为y=3x﹣6.
(2)①∵直线BQ将△BDE的面积分为1:2两部分,
∴S△BEQ=S△BDE或S△BEQ=S△BDE.
在y=x+3中,当x=0时,y=3;当x=4时,y=6.
∴B(0,3),D(4,6).
在y=3x﹣6中,当x=0时,y=﹣6.
∴E(0,﹣6).
∴BE=9.
如图1中,过点D作DH⊥y轴于点H,则DH=4.
∴S△BDE=BEDH=×9×4=18.
∴S△BEQ=×18=6或S△BEQ=×18=12.
设Q(t,3t﹣6),由题意知t>0.
过点Q作QM⊥y轴于点M,则QM=t.
∴×9×t=6或×9×t=12.
解得t= 或 .
当t=时,3t﹣6=﹣2;当t=时3t﹣6=2.
∴Q的坐标为(,﹣2)或(,2).
②当点D落在x正半轴上(记为点D1)时,如图2中.
由(2)知B(0,3),D(4,6),
∴BH=BO=3.
由翻折得BD=BD1.
在△Rt△DHB和Rt△D1OB中,
,
∴Rt△DHB≌Rt△D1OB.
∴∠DBH=∠D1BO.
由翻折得∠DBQ=∠D1BQ.
∴∠HBQ=∠OBQ=90°.
∴BQ∥x轴.
∴点Q的纵坐标为3.
在y=3x﹣6中,当y=3时,x=3.
∴Q(3,3),
当点D落在y负半轴上(记为点D2)时,如图3中.
过点Q作QM⊥BD,QN⊥OB,垂足分别为点M、N.
由翻折得∠DBQ=∠D2BQ.
∴QM=QN.
由(2)知S△BDE=18,即S△BQD+S△BQE=18.
∴BDQM+BEQN=18.
在Rt△BDH中,由勾股定理,得BD= ==5.
∴×5QN+×9QN=18.
解得QN=.
∴点Q的横坐标为.
在y=3x﹣6中,当x=时,y=.
∴Q(,).
综合知,点Q的坐标为(3,3)或(,).
故答案为:(1)y=3x﹣6;(2)①Q的坐标为(,﹣2)或(,2);②点Q的坐标为(3,3)或(,).
【题目】某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖.经过调査.获取信息如下:
购买数量低于5000块 | 购买数量不低于5000块 | |
红色地砖 | 原价销售 | 以八折销售 |
蓝色地砖 | 原价销售 | 以九折销售 |
如果购买红色地砖4000块,蓝色地砖6000块,需付款86000元;如果购买红色地砖10000块,蓝色地砖3500块,需付款99000元.
(1)红色地砖与蓝色地砖的单价各多少元?
(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6000块,如何购买付款最少?请说明理由.
【题目】某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.
组别 | 正确字数x | 人数 |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根据以上信息解决下列问题:
(1)在统计表中,m= ,n= ,并补全条形统计图.
(2)扇形统计图中“C组”所对应的圆心角的度数是 .
(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.