题目内容
【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
【答案】(1)y=-+24x+3200;(2)200元;(2)150元,5000元.
【解析】
试题分析:(1)根据总利润=单件利润×数量得出函数关系式;(2)将y=4800代入函数解析式,求出x的值,然后根据题意进行验根;(3)将二次函数进行配成顶点式,然后得出最值.
试题解析:(1)根据题意,得y=(2400﹣2000﹣x)(8+4×), 即y=﹣x2+24x+3200;
(2)由题意得﹣x2+24x+3200=4800. 整理,得x2﹣300x+20000=0.解这个方程,得x1=100,x2=200.
要使百姓得到实惠,取x=200元. ∴每台冰箱应降价200元;
(3)对于y=﹣x2+24x+3200=﹣(x﹣150)2+5000, 当x=150时, y最大值=5000(元).
所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.
【题目】某同学进行社会调查,随机抽查了某地15个家庭的收入情况,数据如表:
年收入(万元) | 2 | 2.5 | 3 | 4 | 5 | 9 | 13 |
家庭个数 | 1 | 3 | 5 | 2 | 2 | 1 | 1 |
(1)求这15个家庭年收入的平均数、中位数、众数;
(2)你认为用(1)中的哪个数据来代表15个家庭年收入的一般水平较为合适?请简要说明理由.
【题目】国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:
获奖等次 | 频数 | 频率 |
一等奖 | 10 | 0.05 |
二等奖 | 20 | 0.10 |
三等奖 | 30 | b |
优胜奖 | a | 0.30 |
鼓励奖 | 80 | 0.40 |
请根据所给信息,解答下列问题:
(1)a= ,b= ,且补全频数分布直方图;
(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?
(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.