题目内容

如图,在△ACB中,点D是AB边上的一点,且∠ACB=∠CDA;点E在BC边上,且点E到AC、AB的距离相等,连接AE交CD于点F.试判断△CEF的形状;并证明你的结论.
分析:根据角平分线上的点到两边的距离相等可知点E在∠CAB的角平分线上,再根据角平分线的性质可知∠CEF=∠CFE,即可得出CF=CE,即三角形为等腰三角形.
解答:解:△CEF是等腰三角形,理由如下:
证明:∵点E到AC、AB的距离相等,
∴点E在∠CAB的平分线上,
∴AE平分∠CAB,
∴∠CAE=∠BAE,
∵∠CEA=180°-∠CAE-∠ACB,∠DFA=180°-∠DAE-∠ADC.
∵∠ACB=∠CDA,
∴∠CEA=∠DFA,
∵∠DFA=∠CFE,
∴∠CEF=∠CFE,
∴CF=CE.
∴△CEF是等腰三角形.
点评:本题主要考查了等腰三角形的判定以及角平分线的性质,难度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网