题目内容
【题目】如图,抛物线y=﹣x2+(m﹣1)x+m(m>1)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)点D和点C关于抛物线的对称轴对称,点你F在直线AD上方的抛物线上,FG⊥AD于G,FH∥x轴交直线AD于H,求△FGH的周长的最大值;
(3)点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,使得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.
【答案】
(1)
解:把C(0,3)代入y=﹣x2+(m﹣1)x+m得m=3,
∴抛物线的解析式为:y=﹣x2+2x+3,
(2)
解:令y=﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),C(0,3),
∵点D和点C关于抛物线的对称轴对称,
∴D(1,2),AD的解析式y=x+1,
∴OA=OE=1,
∴∠EAO=45°,
∵FH∥AB,
∴∠FHA=∠EAO=45°,
∵FG⊥AH,
∴△FGH是等腰直角三角形,
设点F坐标(m,﹣m2+2m+3),
∴点H坐标(﹣m2+2m+2,﹣m2+2m+3),
∴FH=﹣m2+m+2,
∴△FGH的周长=(﹣m2+m+2)+2× (﹣m2+m+2)=﹣(1+ )(m﹣ )2+
∴△FGH的周长最大值为 ;
(3)
解:∵抛物线y=﹣x2+2x+3的定点坐标为(1,4),
∴直线AM的解析式为y=2x+2,
∵直线l垂直于直线AM,
∴设直线l的解析式为y=﹣ x+b,
∵与坐标轴交于P、Q两点,
∴直线l的解析式为y=﹣ x+b与y轴的交点P(0,b),与x轴的交点Q(2b,0),
设R(1,a),
∴PR2=(﹣1)2+(a﹣b)2,QR2=(2b﹣1)2+a2,PQ2=b2+(2b)2=5b2,
∵△PQR是以PQ为斜边的等腰直角三角形,
∴PR2=QR2,即(﹣1)2+(a﹣b)2=QR2=(2b﹣1)2+a2,
∴﹣2a=3b﹣4,①
∴PR2+QR2=PQ2,
即(﹣1)2+(a﹣b)2+(2b﹣1)2+a2=5b2,
∴2a2﹣2ab﹣4b+2=0,②
联立①②解得: , ,
∴直线l的解析式为y=﹣ x+ 或y=﹣ x+2.
【解析】(1)求出A、D两点坐标,利用待定系数法即可解决问题.(2)首先证明△FHG是等腰直角三角形,构建二次函数利用函数性质解决问题即可;(3)求得直线AM的解析式为y=2x+2,根据直线l垂直于直线AM,设直线l的解析式为y=﹣ x+b,得到直线l的解析式为y=﹣ x+b与y轴的交点P(0,b),与x轴的交点Q(2b,0),设R(1,a),根据勾股定理列方程即可得到结论.
【考点精析】关于本题考查的二次函数的性质,需要了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.