题目内容
【题目】如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为( )
A.
B.
C.
D.
【答案】A
【解析】解:∵点O到△ABC三边的距离相等,
∴BO平分∠ABC,CO平分∠ACB,
∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣2(∠OBC+∠OCB)=180°﹣2×(180°﹣∠BOC)=180°﹣2×(180°﹣120°)=60°,
∴tanA=tan60°= ,
故选A.
由条件可知BO、CO平分∠ABC和∠ACB,利用三角形内角和可求得∠A,再由特殊角的三角函数的定义求得结论.本题主要考查角平分线的性质,三角形内角和定理,正切三角函数的定义,掌握角平分线的交点到三角形三边的距离相等是解题的关键.
练习册系列答案
相关题目