题目内容
【题目】一次函数y=﹣x+1与反比例函数 ,x与y的对应值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 1 | 2 | 3 |
y=﹣x+1 | 4 | 3 | 2 | 0 | ﹣1 | ﹣2 |
1 | 2 | ﹣2 | ﹣1 | ﹣ |
不等式﹣x+1>﹣ 的解为 .
【答案】x<﹣1或0<x<2
【解析】解:易得两个交点为(﹣1,2),(2,﹣1),经过观察可得在交点(﹣1,2)的左边或在交点(2,﹣1)的左边,y轴的右侧,相同横坐标时一次函数的值都大于反比例函数的值,所以 不等式﹣x+1>﹣ 的解为x<﹣1或0<x<2.
【考点精析】根据题目的已知条件,利用一次函数的图象和性质和反比例函数的图象的相关知识可以得到问题的答案,需要掌握一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远;反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点.
练习册系列答案
相关题目
【题目】某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分. 请根据图表信息回答下列问题:
视力 | 频数(人) | 频率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)本次调查的样本为 , 样本容量为;
(2)在频数分布表中,a= , b= , 并将频数分布直方图补充完整;
(3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?