题目内容
两座灯塔A和B与海岸观察站S的距离相等,A在S北偏东30°方向,B在S的南偏东60°方向,则灯塔B在灯塔A的______方向.
由题意得∠MSA=30°,∠NSB=60°,
∴∠ASB=180°-30°-60°=90°,
∵AS=BS,
∴∠SAB=45°.
∵MN∥AD,
∴∠SAD=∠MSA=30°,
∴∠BAD=∠SAB-∠SAD=45°-30°=15°.
∴灯塔B在灯塔A的南偏东15°.
故答案为:南偏东15°.
∴∠ASB=180°-30°-60°=90°,
∵AS=BS,
∴∠SAB=45°.
∵MN∥AD,
∴∠SAD=∠MSA=30°,
∴∠BAD=∠SAB-∠SAD=45°-30°=15°.
∴灯塔B在灯塔A的南偏东15°.
故答案为:南偏东15°.
练习册系列答案
相关题目