题目内容
【题目】如图,在正方形ABCD中,点E、F分别在边BC、DC上,AE、AF分别交BD于点M、N,连接CN、EN,且CN=EN.下列结论:①AN=EN,AN⊥EN;②BE+DF=EF;③;④图中只有4对相似三角形,其中正确结论的个数是( )
A. 4B. 3C. 2D. 1
【答案】B
【解析】
①证明△NBA≌△NBC,∠ABE+∠ANE=180°即可解决问题;
②证明△AFH≌△AFE即可;
③如图2中,首先证明△AMN∽△AFE,可得,即可解决问题;
④相似三角形不止4对相似三角形.
将△ABE绕点A逆时针旋转90°得到△ADH.
∵四边形ABCD是中正方形,
∴AB=BC=AD,∠BAD=∠ABC=90°,∠ABD=∠CBD=45°,
在△BNA和△BNC中,
,
∴△NBA≌△NBC(SAS),
∴AN=CN,∠BAN=∠BCN,
∵EN=CN,
∴AN=EN,∠NEC=∠NCE=∠BAN,
∵∠NEC+∠BEN=180°,
∴∠BAN+∠BEN=180°,
∴∠ABC+∠ANE=180°,
∴∠ANE=90°,
∴AN=NE,AN⊥NE,故①正确,
∴∠3=∠AEN=45°,
∵∠3=45°,∠1=∠4,
∴∠2+∠4=∠2+∠1=45°,
∴∠3=∠FAH=45°,∵AF=AF,AE=AH,
∴△AFE≌△AFH(SAS),
∴EF=FH=DF+DH=DF+BE,∠AFH=∠AFE,故②正确,
∵∠MAN=∠EAF,∠AMN=∠AFE,
∴△AMN∽△AFE,
∴,
故③正确,
图中相似三角形有△ANE∽△BAD~△BCD,△ANM∽△AEF,△ABN∽△FDN,△BEM∽△DAM等,故④错误,
故选B.
练习册系列答案
相关题目