题目内容

【题目】如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).

(1)求抛物线的函数表达式;

(2)若点P在抛物线上,且SAOP=4SBOC,求点P的坐标;

(3)如图b,设点Q是线段AC上的一动点,作DQx轴,交抛物线于点D,求线段DQ长度的最大值.

【答案】(1)y=﹣x2﹣2x+3(2)(﹣1,4)或(﹣1+2,﹣4)或(﹣1﹣2,﹣4)(3)

【解析】

试题分析:(1)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;

(2)设P点坐标为(x,﹣x2﹣2x+3),根据SAOP=4SBOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;

(3)先运用待定系数法求出直线AC的解析式为y=x+3,再设Q点坐标为(x,x+3),则D点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.

试题解析:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得

解得

故该抛物线的解析式为:y=﹣x2﹣2x+3.

(2)由(1)知,该抛物线的解析式为y=﹣x2﹣2x+3,则易得B(1,0).

SAOP=4SBOC

×3×|﹣x2﹣2x+3|=4××1×3.

整理,得(x+1)2=0或x2+2x﹣7=0,

解得x=﹣1或x=﹣1±2

则符合条件的点P的坐标为:(﹣1,4)或(﹣1+2,﹣4)或(﹣1﹣2,﹣4);

(3)设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,3)代入,

解得

即直线AC的解析式为y=x+3.

设Q点坐标为(x,x+3),(﹣3x0),则D点坐标为(x,﹣x2﹣2x+3),

QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+2+

当x=﹣时,QD有最大值

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网